BIST hardware synthesis for RTL data paths based on testcompatibility classes

نویسندگان

  • Nicola Nicolici
  • Bashir M. Al-Hashimi
  • Andrew D. Brown
  • Alan Christopher Williams
چکیده

New BIST methodology for RTL data paths is presented. The proposed BIST methodology takes advantage of the structural information of RTL data path and reduces the test application time by grouping same-type modules into test compatibility classes (TCCs). During testing, compatible modules share a small number of test pattern generators at the same test time leading to significant reductions in BIST area overhead, performance degradation and test application time. Module output responses from each TCC are checked by comparators leading to substantial reduction in fault-escape probability. Only a single signature analysis register is required to compress the responses of each TCC which leads to high reductions in volume of output data and overall test application time (the sum of test application time and shifting time required to shift out test responses). This paper shows how the proposed TCC grouping methodology is a general case of the traditional BIST embedding methodology for RTL data paths with both uniform and variable bit width. A new BIST hardware synthesis algorithm employs efficient tabu search-based testable design space exploration which combines the accuracy of incremental test scheduling algorithms and the exploration speed of test scheduling algorithms based on fixed test resource allocation. To illustrate TCC grouping methodology efficiency, various benchmark and complex hypothetical data paths have been evaluated and significant improvements over BIST embedding methodology are achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Power Test Compatibility Classes: Exploiting Regularity for Simultaneous Reduction in Test Application Time and Power Dissipation

Traditional DFT methodologies increase useless power dissipation during testing and are not suitable for testing low power VLSI circuits leading to lower reliability and manufacturing yield. Traditional test scheduling approaches based on fixed test resource allocation decrease power dissipation at the expense of higher test application time. On the one hand it was shown that power conscious te...

متن کامل

Testability Trade-Offs for BIST Data Paths

Power dissipation during test application is an emerging problem due to yield and reliability concerns. This paper focuses on BIST for RTL data paths and discusses testability trade-offs in terms of test application time, BIST area overhead and power dissipation.

متن کامل

Power conscious test synthesis and scheduling for BIST RTL data paths

Previous research has outlined that power dissipated during test application is substantially higher than during functional operation, which leads to loss of yield and decreases reliability. This paper shows for the first time how power is minimized in BIST RTL data paths by using power conscious test synthesis and test scheduling. According to the necessity for achieving the required test effi...

متن کامل

TAO-BIST: A Framework for Testability Analysis and Optimizationb of RTL Circuits for BIST

In this paper, we present TAO-BIST, a framework for testing register-transfer level (RTL) controller-datapath circuits using built-in self-test (BIST). Conventional BIST techniques at the RTL generally introduce more testability hardware than is necessary, thereby causing unnecessary area, delay and power overheads. They have typically been applied to only application-specific integrated circui...

متن کامل

On the Practical Implementation of Masked-based BIST

The purpose of this paper is to present evidence on a practical implementation of a recently proposed RTL BIST approach – m-BIST, or masked BIST. In order to detect random pattern-resistant faults, partially defined vectors, referred as masks (activating the lowaccessible parts of the RTL functionality) modulate pseudo-random vectors generated by the LFSR. Using ITC’99 benchmarks as case studie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. on CAD of Integrated Circuits and Systems

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2000